PR2: Image Classification
Student name: Yang Chen 013009243

Program Title: Image classfication using different feature extraction and classification
methods

Rank & F1-score: 22 & 0.7937

Program Description: In this program we are going to use the knowledge we learned
in class and researched from internet to identify traffic images into 14 different types.
We have 100,000 training records and 100,000 test records. The result can be ranked
on CLP website. It will provide the rank and F1 score based on the ranking of
submissions of different students and the correctness of the answer.

Purposes: Writing this program’s purpose is to practise on the data mining knowledge
coding ability and prepare for the further data mining study.

Limitations and Findings: | first used KNN searching method which is very slow for
1GB image data. It tooks me 16 hours to finish the run.

Feature Extraction Kaze Descriptor: Kaze Descriptor shipped in the base OpenCV
library compare with other algorithm like SURF, ORB, SIFT, BRIEF. It helps me to find
features from the image.

Here is screen shots of feature
extraction, code and output.

alg = cv2.KAZE create()

kps - alg.detect(image)

kps - sorted(kp:
kps, dsc - alg.

needed_size - (vector_size + 64
dsc.size - needed size:

[*
e
it

Keypoint descriptor

Query image
image traffic/traffic/test/834837.jpg

[9.00234357 0.01463034 0.06290158 ..., -0.02479288 0.08946808
8.88153647]

KNN Classification Model: The K-nearest neighbors (KNN) algorithm is a simple,
supervised machine learning algorithm that can be used to solve both classification and

regression problems. In this assignment i used k=3 and vote for the result. Below is the
image of code and output.

def match(self

0.08817404 -0.00613884 ©.81817107 ..., 0.

teatures featupes(image. pachl '835691.3pg’, '829227.jpg’, '017795.jpg"']
'3ro'a2 120 ..., ‘140 ‘140 ‘140
35690, 29226, 17794]

Y140, '140]

None " (image_path))
1
L

img_distances cdist(features)

nearest_ids _distances) [:to
nearest_img_path: .names [nearest_ids]
results - self.lab rest_ids].tolist()

Line 125 voteResult 14
print(nearest_img_paths)
print(self.labels)

print(nearest_ids)
print(results)

voteResult s esults)
print("line (voteResult))

cv2.error
Error: ', e)

vote L
print("vote %s"%(vote))
vote classVotes:
classVotes [vote] i

classVotes [vote] - 1
sortedVotes - sorted(classVotes.items(), key-operator.it
print(sortedVotes)

sortedVotes [] [0]

PCA Dimensionality Reduction: As a exercise i implemented the pca dimensionality
reduction for my program based on the dr2 activity code. | did not used it in my final
result even it helps me improve the accuracy on the traffic_small samples.

def pcaDimensionReduction(s
pca PCAL{n_
pca. fit(matrix)

X_train_pca pca.tra rmimatrixﬂ
X_test pca - pca.transform{test_matrix)

X_train_pca, x_test_pca

Histogram of Oriented Gradients: hog helps converts an image to a feature vector.
For example a image with size 64x128x3 will be converted to feature vector of length
3780. It focus more on the shape than the color.

365.06-!9013 (2) 3 4@3422
37 9 9 179 78 27 169 166 I “;9‘37 2= 4
87 136 173 39 102 163 152 176 Mlipa griz ar- 4 A fa a5
7 g T
76 13 1 168159 22 125 143 / Fp. 00 186,196 85 (22 26 2 q = 4 {}E — 1’}1"
b i F: b
120 70 14 150 145 144 145 143 L, 7g 91 155133 136 144 152 57 28 II'I,I'I ¥
P
58 86 119 98 100 101 133 113 +7+71 |98 196 76 38 26 60 170 51 Q'I,r
R
165 60 60 27 77 85 43 136 — ot - .
30 85 157 75 78 165 145 124 ,/1/ ; E = Al Ctall L
11 170 91 4 110 17 133}\6 7’ 1 71 13 34 23 108 27 48 110 qr
Gradient Direction” 2 ! Gradient Magnitude
ey I
s = 1
- ’
s ’ 1
- /
> F ¥
2 2. 2
[20 40 60 80 100 120 140 160

Histogram of Gradients

