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Abstract—

I. INTRODUCTION

The transportation industry is currently undergoing mul-
tiple major shifts. A few of the notable shifts are the rise
in ride-sharing and personal mobility devices. While ride-
sharing is increasing the number of riders per vehicle [1],
personal mobility – also known as micro-mobility – is
providing new ways for individuals to transport themselves
in urban environments, fulfilling their first-mile and last-mile
needs. The emergence of these shifts can be attributed to
advancements in technology, needs for new use-cases as well
as a renewed availability of large funding sources [2].

These shifts are not only changing how people transport
themselves, but also show that the future of urban transporta-
tion is multi-modal [3], [4], [5] with different kinds of vehi-
cles designed to fulfill very specific needs. This is a marked
difference from a world where cars were the central, most
important means of transportation. Although cars are the
most versatile type of vehicle, they are also very inefficient
for personal transportation needs. The low car occupancy rate
is the single biggest contributor of congestion and jams in
urban environments [6]. Given that this is poised to change,
self-driving vehicles operating in urban-environments will
also need to be able to safely and efficiently interact with
and navigate around these newly added less versatile but
efficient single-purpose vehicles.

While there are expected to be many different kinds of
micro-mobility vehicles, ranging from bikes to scooters to
self-navigating food delivery robots [7], the most popular
and widely available types of vehicles in urban settings
are personal transportation vehicles. These include vehicles
such as electric scooters from companies like LimeTM[8]
and BirdTM[9], skateboard-esque vehicles from Boosted
BoardTM[10] to One-wheelTM[11] and other smaller vehicles
collectively known as hoverboards etc. Although all these
vehicles are meant to transport a single person at one time,
they have varying appearances, movement models, learning
curves and safety. In addition, the usage of these vehicles
is not very well defined for example, while skateboards and
hoverboards can be used on sidewalks, electric scooters and
bicycles are only meant be used in dedicated lanes, but can
sometimes occupy entire lanes. The usage patterns also differ
depending on the availability of dedicated lanes and other
infrastructure such as docks and charging stations.

Given this variability in movement dynamics, usage pat-
terns and appearances, the task of detecting, and predicting
paths for these vehicles is a non-trivial one. Self-driving
cars will need to expertly be able to detect, localize and
predict paths for these vehicles in order to avoid hitting them.
What makes this task even more challenging is the fact that
these vehicle are small and difficult to spot from a distance.
Although, self-driving cars are good at detecting pedestrians,
it is difficult for them to distinguish between a pedestrian and
a person riding one of these vehicles. It is not difficult to see
why this is a major problem – max speed of a pedestrian on
average is 2.8 miles per hour [12], whereas, max speed of
an electric skateboard is 24 miles per hour [13]. A false
detection of a skateboard rider as a pedestrian may lead to a
widely wrong predictions of their future path and may lead
to collisions and even fatal crashes.

In this project, we attempt to improve self-driving cars’
capabilities of safely interacting with micro-mobility vehicles
through the means of simulation. First, we create realistic 3D
models of popular micro-mobility vehicles using computer-
aided design (CAD) software and place them in the sim-
ulation environment provided by the LG SVL Automotive
Simulator [14]. Second, we configure physics for a subset of
the vehicles to recreate realistic movement. We then collect
data from perception sensors provided by the ego-car in the
LG SVL Automotive Simulator and use that data to train
2D and 3D object detection models. Lastly, we evaluate the
performance of Baidu Apollo Autonomous Driving platform
[15] with the introduction of micro-mobility vehicles in the
environment and identify improvements.

The main contributions of this work are (i) 3D CAD
models of popular micro-mobility vehicles, (ii) a modified
simulation environment based on LG SVL Automotive Sim-
ulator [14] including micro-mobility vehicles, (iii) two fully
annotated datasets with 10,000 datapoints each that can be
used for custom training; these datasets include data from
the main camera, depth camera and LiDAR sensors, and
ground truth annotations in 2D and 3D, (iv) fully trained 2D
Bounding box detection model in V based on YOLOv3 [16],
(v) implementation of YOLO3D 3D Bounding box detection
model [17] in Keras [18] with TensorFlow [19] backend,
and (vi) performance evaluation of Baidu Apollo [15] with
micro-mobility vehicles in simulation.



Fig. 1. Project Phases

Fig. 2. LG SVL Automotive Simulator [14]

II. PROJECT PHASES

We split this project into three phases. Figure ?? describes
the phases and the goals for each phase. Please note that
this report describes the procedures and results from phases
1 and 2, while phase 3 is left as future work. We do include
results from our preliminary testing of the e-scooter model
with Apollo from phase 3 in VII.

III. SIMULATION ENVIRONMENT

A. LG SVL Autonomous Driving Simulator

The simulation environment that we chose for this project
is the LG SVL Automotive Simulator built by LG Silicon
Valley Lab (LG SVL) [14]. This is a Unity [20] based simula-
tor that provides out-of-box integration with Baidu’s Apollo
- Open autonomous driving platform [15]. It also provides a
controllable car platform with an array of simulated sensors
such as LiDAR, cameras, depth camera, radar, GPS etc. This
allows for algorithms to be developed on the data collected
from the simulator, and subsequently be tested on the same
car. The simulator also allows for modifications to be made to
the 3D environment, as well as quickly generate HD maps
from the environment. Figure 2 shows a screenshot of the
LG SVL Automotive Simulator with LiDAR sensor and 3D
Ground Truth sensors turned on.
The flexibility and ease-of-use of the LG SVL Automotive
Simulator made it a good choice for the purpose of this

project as many modifications were needed to achieve our
intended goals.

B. Addition of new vehicles

1) Modeling Micro-Mobility Vehicles: We decided to
model 5 different kinds of micro-mobility vehicles:

• Electric scooter
• Hoverboard
• Skateboard
• Onewheel XRTM[11]
• Segway Personal TransporterTM[25]

These vehicles were chosen because for their varied ap-
pearance and motion models, and their popularity in urban
environments. Figure 3 shows the process followed for
modeling of these vehicles. Since the e-scooter will be used
to test Apollo’s ability to detect and avoid micro-mobility
vehicles, we needed to model it such that its motion could
be as realistic as possible. To that end we modeled the
scooter’s handlebar, its wheels and its body as separate
objects constrained in a single assembly. For simplicity,
all other vehicles were modeled as combined solid models,
meaning that the wheels could not be rotated independently
on their axis with respect to the vehicle model. Video at
?? shows how e-scooter’s components can be manipulated
separately.
After importing the vehicles into Unity, we added a
BoxCollider component to the entire vehicle includ-
ing the rider. The BoxCollider component determines
the 3D boundary of the vehicle and triggers calculations
for collisions as the vehicle moves and collides with
other GameObjects. BoxCollider component is also
what keeps vehicle in contact with the ground. Without
a BoxCollider, the vehicle would just fall through the
ground as no collisions would be triggered to calculate the
position of the vehicle with respect to the ground. The
BoxCollider component’s dimensions are adjusted to fit
the vehicle tightly. BoxCollider component’s dimensions
also define the Ground Truth Bounding box’s dimensions
which is why setting the dimensions correctly is extremely
important. Its boundaries can be seen in 3(f).
To make handling of these vehicles easier, we created sepa-
rate layers for each vehicle type listed above and distributed
them into these layers. Prefabs for every type of vehicle were
then saved.

2) Set up for data collection: After creating prefabs for
the new micro-mobility vehicles, we duplicated each vehicle
30 times and placed them in different locations with different
orientations in the San Francisco Downtown scene provided
by LG SVL Simulator. Having multiple instances of the
vehicles allows us to capture many instances of the same
vehicles in different locations quickly. Since there is no
automated way of placing the vehicles in the scene and we
had to manually place the vehicles on different roads and
sidewalks, the distribution of the vehicles was not entirely
uniform. This resulted in more vehicles being placed in
the beginning of the route, and fewer at the end, which
contributed to varying frame-rate performance during the



Fig. 3. This figure shows the design process for micro-mobility vehicles created for the project. The first step is to model the vehicle as a solid model
in a solid-modeling CAD software. This step is performed in SolidWorks [21] and is shown in (a). The solid model is then converted into a mesh and
saved in stereolithography (STL)[22] format as shown in (b). This file is then imported into Blender[23] which is a 3D mesh modeling, animating and
rendering software. In this step (c), materials and colors are added to the mesh, and the origin of the model is translated to the center of gravity of the
vehicle. The local axis is then rotated to follow the defaults followed by Unity[20]. This step is extremely important as a wrong axis configuration will
lead to unexpected movement behavior in Unity. The mesh model is then imported into a test scene inside Unity (d). In this step, we ensure that the axis
orientation is correct and scale the model to the correct dimensions if needed. We then add a RigidBody component to it and add a realistic mass in kg
to it. Once the vehicle is correctly configured, we add the human model to the vehicle. The humanoid is downloaded from [24]. By default the human
is positioned in a T-orientation. We adjust the joints of the human to conform it to the vehicle. This step is performed as a static movement or as an
animation depending on the intended usage. The human and vehicle are then grouped under a single Prefab and saved in the Prefabs folder of the Unity
project. In step (f), the prefab is imported into the San Francisco simulator scene where it will be used for data collection.

route. For instance, while we achieved average frame-rate
of only 12 FPS at the beginning of the route, we were able
to achieve average frame-rate on 30 FPS near the end of the
route. Although this did not effect data collection, it did result
in poorer real-time detection performance at the beginning
of the route compared to at the end as explained in ??.

C. Modifications to Ego-car

LG SVL Automotive Simulator [14] provides an ego-car
configured with sensors to work with Apollo [15]. We used
this car as the starting point for our modifications. This ego-
car is equipped with sensors to perceive its environment.
Apart from the simulated counterparts of physical perception
sensors such as LiDAR, cameras and RADAR, this car also
includes sensors to ”sense” ground truth bounding boxes
(both in 2D and 3D) for obstacles. By default, however, these
sensors only detect ground truth bounding boxes for existing
NPC (Non-playable characters) cars, trucks and pedestrians
and not for the newly added micro-mobility vehicles. To
output bounding boxes for the new micro-mobility vehicles,
we made the following changes.

1) Adding Ground Truth Sensors: In order to detect
ground truths for micro-mobility vehicles, we added two
additional sensors to the ego-car – MMGroundTruth2D
and MMGroundTruth3D – for 2D and 3D ground truth
bounding boxes respectively. These sensors are similar to the
existing ground truth sensors except that they only output
boxes for micro-mobility vehicles’ layers. Bounding box
colors are defined in this sensor and toggle switches to turn
these sensors on or off are also added.

2) Modifying Culling Masks: Users can selectively choose
the layers that perception sensors in the car, such as cameras,
LiDAR and depth sensors, can ”see” by choosing them
the CullingMask selector. By default, the newly added
layers for micro-mobility vehicles are not added to the

CullingMask. Therefore, the new vehicles need to be
selected in the CullingMask selector for the sensors to
render them.

3) Modifications to Perception sensors: The number of
channels in the LiDAR sensor were changed from 16 (de-
fault) to 64. In addition, motion blur was removed from
the DriverCamera GameObject as it resulted in blurry
images at lower frame rates.

4) Modifying NeedsBridge list: The NeedsBridge
list contains references to all components that are only
instantiated when a ROSBridge server is active and the
simulator is connected as a client. This is done so that the
simulator does not collect and publish messages to topics if
they cannot be transferred over ROSBridge to any nodes that
are subscribing to them. By default, MMGroundTruth2D,
MMGroundTruth3D and the depth camera are not added to
NeedsBridge list. The script components of these sensors
are added to NeedsBridge list in order to send messages
over ROSBridge.

IV. DATA COLLECTION

A. lgsvl data collector ROS package

To perform detection of micro-mobility vehicles, we need
to collect annotated ground truth data from the various
perception sensors available on the ego-car. The data streams
that we collected are the following:

1) Main Camera frames
a) Topic: /apollo/sensor/camera/

traffic/image short/compressed
b) Message type: CompressedImage
c) Image dimensions: 1920× 1080

2) Depth Camera frames
a) Topic: /simulator/sensor/

depth camera/compressed



Fig. 4. Using lgsvl data collector for collecting data from LG
SVL simulator over ROSBridge

b) Message type: CompressedImage
c) Image dimensions: 1920× 1080

3) LiDAR point clouds
a) Topic: /apollo/sensor/

velodyne64/compensator/
PointCloud2

b) Message type: PointCloud2
c) Channels: 64

4) Micro-mobility 2D Ground Truth
a) Topic: /simulator/ground truth/

mm 2d detections
b) Message type: Detection2DArray

5) Micro-mobility 3D Ground Truth
a) Topic: /simulator/ground truth/

mm 3d detections
b) Message type: Detection3DArray

To maintain acceptable frame-rates, we set the publish rate
of these topics at 8 Hz. While the camera images and ground
truth messages were saved captured and saved directly by
data collector node, LiDAR point clouds were repub-
lished on sync pcl2 topic. The pointcloud to pcd
node provided by pcl ros package was run to subscribe
to sync pcl2 topic and was used to convert the published
point clouds to PCD files. Figure 4 shows the graph for this
process.

B. Datasets collected

Using the process defined in IV-A, we collected multiple
datasets.

1) Small Dataset: We first collected a small dataset to
ensure that data collection was working correctly. This
dataset contains 1035 data points and was collected with
time of day frozen at 11 AM. Collecting this dataset required
driving the ego-car manually in the San Francisco Downtown
map for less than 10 minutes. Since we did not drive the car
through the entire map, the number of e-scooters appearing
in this dataset is a lot larger than other vehicles.

2) Large Dataset 1: After ensuring that data collection is
working correctly, we drove the ego-car manually for about 1

hour and collected this dataset. This dataset contains 10,042
data points. Time of day was allowed to vary and we added
rain, fog and road wetness characteristics in this dataset as
well.

3) Large Dataset 2: The process of collecting the large
dataset 1 was repeated to collect a second large dataset. This
dataset was collected as we needed more LiDAR PCD files
for training 3D bounding box detection as mentioned in VI.
This dataset contains 10,255 datapoints in different weather
conditions and time of day.

V. 2D DETECTION USING YOLOV3

Perception is an important module in autonomous driving
because it provides clear visions of one’s surroundings. A
2D detection using camera images is a first step to the
perception. The 2D detection model should not only be
accurate in detecting objects but also be fast enough to run
in real time. For this task, we used YOLOv3[16], a real-time
object detection architecture based on images.

A. Data Preprocessing

VI. 3D DETECTION USING YOLO3D

The 2D detection using camera images has a great ad-
vantage to classify objects due to its utilization of RGB
channels. However, it lacks the depth information which
is critical for self-driving cars to tell exactly where other
objects are located from the rider’s perspective. Therefore,
LiDAR is used to perceive exact locations of other obstacles.
When our group was selecting which architecture to use for
3D object detection, we first had to make sure the model
could run in real time. We found out that Baidu’s Apollo
uses YOLO3D[17] which is based on YOLOv2[26] for their
3D object detection. Also, YOLO3D is solely dependent on
point cloud data from the LiDAR; therefore, we decided to
use the YOLO3D architecture. For this task, we followed
instructions from the paper and built the architecture from
scratch since there were no publicly available source codes.

A. Data Preprocessing

YOLO3D utilizes bird-eye-view maps which are the trans-
lation of point cloud data to 2-dimensional feature maps
where it crops forward and side ranges like the Figure5.

The original paper uses feature maps of 608x608 in
dimensions. When they translate the point cloud data to bird-
eye-view maps, they only take the side range of 30.4 meters
for each side with a forward range of 60.8 meters where
the distances are measure from the LiDAR’s perspective.
Each pixel in the map represents 0.1 meters. For the height
range, the original YOLO3D considered from -2 meters to
+2 meters from the LiDAR’s perspective that will be roughly
from the ground to the top of the truck because they were
trained on the KITTI dataset [27].

In our 3D object detection model, we set the forward range
of 15.2 meters while having the side range of 7.6 meters for
each side; therefore, each grid represents 0.025 meters. Since
our model only detects those five objects we are interested,
we set the height range to cover from -2 meters to 0 meter.



Fig. 5. Bird-eye-view frame rotation and translation

The primary reason for this zoomed-in bird-eye-view map is
that our targets are much smaller than those cars and trucks.
If we kept the same resolution as the paper did, our targets
would only be shown as 1 to 2 pixels nearly impossible to
differentiate each other.

We have only talked about the grid sizes that are deter-
mined by the forward and the side ranges. We also slice
height range with a height resolution. We kept this resolution
to be 0.03125 meter in order to slice our heights into 64
slices. As a result, our final bird-eye-view conversion would
produce maps with dimensions of (608, 608, 64) where the
first two dimensions represent (x, y) location from the Li-
DAR and the last channel represents the height value at the
given (x, y) location.

B. Height Map

After converting the point cloud data to bird-eye-view
maps, we extract a height map which takes the maximum
height at a given (x, y) location. This is simply done by
getting the maximum height value out of those 64 slices at a
given pixel. Then we store these maximum values to a new
(608, 608) map which creates a height map.

C. Density Map

From those (608, 608, 64) bird-eye-view maps, we also
need to extract a density map which is based on Eq 1. In
the density map, each pixel represents how dense each pixel
location is by calculating the sum of all non-empty points in
those 64 slices. This also produces another (608, 608) map.

min(1.0,
log(N + 1)

log(64)
) (1)

We then generated a height map and a density map to
produce (608, 608, 2), a 2-channel image (Figure 6) that will
be used as an input to our YOLO3D architecture.

D. YOLO3D Architecture

As mentioned previously, YOLO3D is based on YOLOv2,
a CNN architecture for real-time object detections. However,
there needs some modifications on CNN layers, parameters,

Fig. 6. bird-eye-view maps generated from the point cloud data collected
with the LGSVL simulator. (a) height map (b) density map where both
figures are in size of (608, 608). The red rectangles are intentionally drawn
to show the location of the object’s ground truth

and a loss function to detect objects in 3D. The predictions
from the YOLO3D include 3 more regression outputs.

• yaw angle to tell the orientation of the object
• z center coordinate of the object
• height of the object

These new regression outputs lead us to modify the original
loss function from YOLOv2 in order to train the model
correctly. A new loss function is the following [include
loss function equation]. Note that we included those 3
regression outputs in a new loss function. The YOLO3D
paper has a table of a CNN model summary. We initially
followed those layers but we were not able to obtain the
same output shapes unless we modify some layers. We
changed the third max-pooling layer to have a stride of
2 instead of original 1, and removed the last max-pooling
layer to prevent the output shape to become too small.
As a result, we were able to obtain our output layer to
become in shape of (38, 38, 5, 13); the first two dimensions
represent number of grid on our input image, the third
dimension is number of boxes in each grid, and the last
dimension represents regression outputs for each box that has
8 terms (x, y, z, yaw,width, length, height, objectness) plus
the number of classes (5 classes in our project). [include
our layers model]

E. Training

Within the given forward and side ranges, we were able
to obtain 5503 images. We then divided them - 90% to be
the training set and the rest 10% to be the validation set.
Currently, our training model is under development due to
some issues with batch generations.

VII. TESTING WITH APOLLO

VIII. FUTURE EXTENSIONS

IX. CONCLUSION

X. DELIVERABLES

1) Modified LG SVL Simulator source code:



TABLE I
CNN LAYERS

layer filters size feature maps
conv2d 32 (3, 3) (608, 608, 2)

maxpooling - (size 2, stride 2)
conv2d 64 (3, 3)
conv2d 32 (3, 3)

maxpooling - (size 2, stride 2)
conv2d 128 (3, 3)
conv2d 64 (3, 3)
conv2d 128 (3, 3)

maxpooling - (size 2, stride 2)
conv2d 256 (3, 3)
conv2d 128 (3, 3)
conv2d 256 (3, 3)

maxpooling - (size 2, stride 2)
conv2d 512 (3, 3)
conv2d 256 (1, 1)
conv2d 512 (3, 3)
conv2d 256 (1, 1)
conv2d 512 (3, 3)
conv2d 1024 (3, 3)
conv2d 512 (1, 1)
conv2d 1024 (3, 3)
conv2d 512 (1, 1)
conv2d 1024 (3, 3)
conv2d 1024 (3, 3)
conv2d 1024 (3, 3)
conv2d 1024 (3, 3)
conv2d 1024 (1, 1) (38, 38, 65)
reshape - - (38, 38, 5, 13)

2) Modified LG SVL Simulator binaries:
3) 2D Detection using YOLOv3:
4) 3D Detection using YOLO3D:
5) ROS Packages:
6) Large Dataset 1:
7) Large Dataset 2:
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