PR3: Text Clustering
Student name: Yang Chen 013009243
Program Title: Text Clustering using k-means DBSCAN
Rank & F1-score: 2 & 0.5585

Program Description: In this program we are going to use the knowledge we learned
in class and researched from internet to do text clustering. The Sample file showed
about 7 clusters for 8580 row of sparse matrix. The result can be ranked on CLP
website. It will provide the rank and NMI score based on the ranking of submissions of
different students and the correctness of the answer.

Purposes: Solving the problem of Text Clustering.

Limitations and Findings: This program used NMI to test the accuracy of the program
instead of F1. | will be limited to 5 times per day if i can’t implement NMI locally.

Found a bug in CLP website. | am trying to select the highest submission 0.5585 during
2nd submit. After i select the 4th one which is reverse order of second. The graph
showed me selected a different one. It is quite confusing if i have selected the right one
for submission.

Rank

BB Personal Submissions I#2 Personal Submissions
NMI File Code Submission Time 0.6
(on 50%) o f-" b - ——
0.5071 output6.txt test_kmeans2.py Apr 28, 3:08 PM g 0.4

E 0.3
0.5029 output5.txt test_kmeans2.py Apr28,1:43 PM = |

Z 02
0.4786 outputl.txt test_kmeans2.py Apr28,12:54 PM 0.1

od
0.5585 output2.txt test_kmeans2.py Apr28,12:43 PM 1 2 3 4 5 6 7 B g 10
Index

0.0034 format.dat testl.py Apr22,4:24 PM

Choose as Final Submission &3 Submit Solution =

#4 [0.5585] Apr 28, 12:43 PM B

Use and Existing clustering algorithm (K-means): | found an simple code sample
online to parse a 7 sentences document to vectors and then kmeans from sklearn. It

able to output center points, labels, closest cluster center distance, number of iteration
run.

| also read about the library document to generate the data i need.

£it (X, y=None, sample_weight=None) [source]

Compute k-means clustering.
Parameters: X : array-like or sparse matrix, shape={n_samples, n_features)
Training instances to cluster. It must be noted that the data will be converted to C ordering,
which will cause a memary copy if the given data is not C-contiguous.
y : Ignored
not used, present here for AP| consistency by convention.

sample_weight : array-like, shape (n_samples,), optional

The weights for each observation in X. If None, all observations are assigned equal weight
(default: None)

Attributes: cluster_centers_ : array, [n_clusters, n_features]
Coordinates of cluster centers. If the algorithm stops before fully converging (see tol and
max_iter), these will not be consistent with labels_.
labels_ :
Labels of each point

inertia_ : float

Sum of squared distances of samples to their closest cluster center.
n_iter_: int

Number of iterations run.

vectorizer = TridfVectorize t ‘english')
print(vectorizer)
X = vectorizer.fit_transform(documents)

lines - vectorizer.fit transform{lines)
print(lines)

true_k
model - s(n init="'k-means++',

model. fit(lines)

Implement a variation of the DBSCAN clustering algorithm: First i get values from
matrix about the average distance then observe the distance to find a possible radius
and eps. Then i will write iterations to try different configuration and let it run.

eps 5
radius 0.5
minDis - 99
minDisList

len(model.cluster_centers_))):

range(len(model.cluster_centers_|)):
cosDistanceTemp - cosDistance(model.cluster_centers_|,i,j)
print("cosDistanceTemp ",cosDistanceTemp)
cosDistanceTemp[@] - minDis:
minDis - cosDistanceTemp[@]
minDisList.append(minDis)
print("minDisList ", minDisList)

i range(len(clusters)):
count = @
j range(len(clusters)):
cosDistance(model.cluster_centers_|,i,j)

results[j] - results[i

